Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Res Sq ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38168280

RESUMO

Resistance to the current Androgen Receptor Signaling Inhibitor (ARSI) therapies has led to higher incidences of therapy-induced neuroendocrine-like prostate cancer (t-NEPC). This highly aggressive subtype with predominant small cell-like characteristics is resistant to taxane chemotherapies and has a dismal overall survival. t-NEPCs are mostly treated with platinum-based drugs with a combination of etoposide or taxane and have less selectivity and high systemic toxicity, which often limit their clinical potential. During t-NEPC transformation, adenocarcinomas lose their luminal features and adopt neuro-basal characteristics. Whether the adaptive neuronal characteristics of t-NEPC are responsible for such taxane resistance remains unknown. Pathway analysis from patient gene-expression databases indicates that t-NEPC upregulates various neuronal pathways associated with enhanced cellular networks. To identify transcription factor(s) (TF) that could be important for promoting the gene expression for neuronal characters in t-NEPC, we performed ATAC-Seq, acetylated-histone ChIP-seq, and RNA-seq in our NE-like cell line models and analyzed the promoters of transcriptionally active and significantly enriched neuroendocrine-like (NE-like) cancer-specific genes. Our results indicate that Pax5 could be an important transcription factor for neuronal gene expression and specific to t-NEPC. Pathway analysis revealed that Pax5 expression is involved in axonal guidance, neurotransmitter regulation, and neuronal adhesion, which are critical for strong cellular communications. Further results suggest that depletion of Pax5 disrupts cellular interaction in NE-like cells and reduces surface growth factor receptor activation, thereby, sensitizing them to taxane therapies. Moreover, t-NEPC specific hydroxymethylation of Pax5 promoter CpG islands favors Pbx1 binding to induce Pax5 expression. Based on our study, we concluded that continuous exposure to ARSI therapies leads to epigenetic modifications and Pax5 activation in t-NEPC, which promotes the expression of genes necessary to adopt taxane-resistant NE-like cancer. Thus, targeting the Pax5 axis can be beneficial for reverting their taxane sensitivity.

2.
Cancer Metastasis Rev ; 41(3): 771-787, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35776228

RESUMO

Neuropilins (NRPs) are transmembrane proteins involved in vascular and nervous system development by regulating angiogenesis and axon guidance cues. Several published reports have established their role in tumorigenesis. NRPs are detectable in tumor cells of several cancer types and participate in cancer progression. NRP2 is also expressed in endothelial and immune cells in the tumor microenvironment and promotes functions such as lymphangiogenesis and immune suppression important for cancer progression. In this review, we have taken a comprehensive approach to discussing various aspects of NRP2-signaling in cancer, including its regulation, functional significance in cancer progression, and how we could utilize our current knowledge to advance the studies and target NRP2 to develop effective cancer therapies.


Assuntos
Neoplasias , Neuropilina-2 , Transdução de Sinais , Humanos , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica , Neuropilina-2/metabolismo , Neuropilinas/metabolismo , Microambiente Tumoral
3.
Cell Rep ; 40(3): 111097, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858551

RESUMO

Neuroendocrine (NE)-like tumors secrete various signaling molecules to establish paracrine communication within the tumor milieu and to create a therapy-resistant environment. It is important to identify molecular mediators that regulate this secretory phenotype in NE-like cancer. The current study highlights the importance of a cell surface molecule, Neuropilin-2 (NRP2), for the secretory function of NE-like prostate cancer (PCa). Our analysis on different patient cohorts suggests that NRP2 is high in NE-like PCa. We have developed cell line models to investigate NRP2's role in NE-like PCa. Our bioinformatics, mass spectrometry, cytokine array, and other supporting experiments reveal that NRP2 regulates robust secretory phenotype in NE-like PCa and controls the secretion of factors promoting cancer cell survival. Depletion of NRP2 reduces the secretion of these factors and makes resistant cancer cells sensitive to chemotherapy in vitro and in vivo. Therefore, targeting NRP2 can revert cellular secretion and sensitize PCa cells toward therapy.


Assuntos
Neuropilina-2 , Neoplasias da Próstata , Linhagem Celular Tumoral , Humanos , Masculino , Neuropilina-2/metabolismo , Fenótipo , Próstata/metabolismo , Neoplasias da Próstata/genética , Transdução de Sinais/fisiologia
4.
Oncogene ; 41(30): 3747-3760, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35754042

RESUMO

Aberrant transcriptional activity of androgen receptor (AR) is one of the dominant mechanisms for developing of castration-resistant prostate cancer (CRPC). Analyzing AR-transcriptional complex related to CRPC is therefore important towards understanding the mechanism of therapy resistance. While studying its mechanism, we observed that a transmembrane protein called neuropilin-2 (NRP2) plays a contributory role in forming a novel AR-transcriptional complex containing nuclear pore proteins. Using immunogold electron microscopy, high-resolution confocal microscopy, chromatin immunoprecipitation, proteomics, and other biochemical techniques, we delineated the molecular mechanism of how a specific splice variant of NRP2 becomes sumoylated upon ligand stimulation and translocates to the inner nuclear membrane. This splice variant of NRP2 then stabilizes the complex between AR and nuclear pore proteins to promote CRPC specific gene expression. Both full-length and splice variants of AR have been identified in this specific transcriptional complex. In vitro cell line-based assays indicated that depletion of NRP2 not only destabilizes the AR-nuclear pore protein interaction but also inhibits the transcriptional activities of AR. Using an in vivo bone metastasis model, we showed that the inhibition of NRP2 led to the sensitization of CRPC cells toward established anti-AR therapies such as enzalutamide. Overall, our finding emphasize the importance of combinatorial inhibition of NRP2 and AR as an effective therapeutic strategy against treatment refractory prostate cancer.


Assuntos
Neoplasias de Próstata Resistentes à Castração , Androgênios/farmacologia , Linhagem Celular Tumoral , Humanos , Masculino , Neuropilina-2/genética , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Transdução de Sinais
5.
J Gene Med ; 21(9): e3109, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31265749

RESUMO

BACKGROUND: Wilson's disease (WD) is a rare copper metabolism disorder with hepatic and neurological symptoms. Dopamine ß hydroxylase (DBH) encodes a copper-dependent mono-oxygenase that converts dopamine to norepinephrine, thereby regulating the endogenous dopamine content in the neurons. Polymorphisms of DBH have been reported to be associated with several neurological diseases, such as Parkinson's disease, Alzheimer's disease, schizophrenia and attention-deficit hyperactivity disorder, which have overlapping neurological symptoms with WD. The present study aimed to assess the role of DBH polymorphisms on the clinical course of WD. METHODS: In total, 141 WD patients from India were included in the present study. Three polymorphisms of DBH (rs1611115 in the promoter, rs1108580 in exon 2 and rs129882 in 3'-UTR) were screened for their association with the clinical attributes (hepatic and neurological features) and age of onset of WD using a polymerase chain reaction-restriction fragment length polymorphsm method and sequencing approach. The distribution of genotype or allele frequencies was tested using 2 × 2 contingency chi-squared and logistic regression analysis (additive, dominant and recessive model). RESULTS: The genotypic and allelic frequencies of these single nucleotide polymophisms did not vary significantly along with the clinical symptoms (hepatic and neurological) or the age of onset of WD. No significant association was observed when we analyzed our samples with respect to harboring different kinds of ATP7B mutations (nonsense/in-del and missense). CONCLUSIONS: The data obtained in the present study suggest that the selected DBH variants are unlikely to have any significant contribution towards modifying the clinical symptoms of Indian WD patients.


Assuntos
Dopamina beta-Hidroxilase/genética , Degeneração Hepatolenticular/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Alelos , Criança , Feminino , Frequência do Gene , Genótipo , Degeneração Hepatolenticular/diagnóstico , Degeneração Hepatolenticular/epidemiologia , Humanos , Índia , Masculino , Razão de Chances , Regiões Promotoras Genéticas , Adulto Jovem
6.
Arch Dermatol Res ; 311(3): 163-171, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30756169

RESUMO

Skin pigmentation in human is a complex trait, which varies widely, both within and between human populations. The exact players governing the trait of skin pigmentation remain elusive till date. Various Genome Wide Association Studies (GWAS) have shown the association of different genomic variants with normal human skin pigmentation, often indicating genes with no direct implications in melanin biosynthesis or distribution. Little has been explained in terms of the functionality of the associated Single-Nucleotide Polymorphisms (SNPs) with respect to modulating the skin pigmentation phenotype. In the present study, which, to our knowledge, is the first of its kind, we tried to analyze and prioritize 519 non-coding SNPs and 24 3'UTR SNPs emerging from 14 different human skin pigmentation-related GWAS, primarily using several ENCODE-based web-tools like rSNPBase, RegulomeDB, HaploReg, etc., most of which incorporate experimentally validated evidences in their predictions. Using this comprehensive, in-silico, analytical approach, we successfully prioritized all the pigmentation-associated GWAS-SNPs and tried to annotate pigmentation-related functionality to them, which would pave the way for deeper understanding of the molecular basis of human skin pigmentation variations.


Assuntos
Mineração de Dados/métodos , Bases de Dados Genéticas , Polimorfismo de Nucleotídeo Único , Pigmentação da Pele/genética , Regiões 3' não Traduzidas , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Fenótipo , Mapas de Interação de Proteínas
7.
Neuromolecular Med ; 20(3): 401-408, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29992511

RESUMO

Wilson's disease (WD), an inborn error of copper metabolism caused by mutations in the ATPase copper transporting beta (ATP7B) gene, manifests variable age of onset and different degrees of hepatic and neurological disturbances. This complex phenotypical outcome of a classical monogenic disease can possibly be explained by modifier loci regulating the clinical course of the disease. The brain-derived neurotropic factor (BDNF), critical for the survival, morphogenesis, and plasticity of the neurons, and the dopamine receptor D2 (DRD2), one of the most abundant dopamine receptors in the brain, have been highlighted in the pathophysiology of various neuropsychiatric diseases. This study aims to identify the potential association between BDNF and DRD2 gene polymorphisms and WD and its clinical characteristics. A total of 164 WD patients and 270 controls from India were included in this study. Two BDNF polymorphisms [p.Val66Met (c.G196A) and c.C270T] and the DRD2 Taq1A (A2/A1 or C/T) polymorphism were examined for their association with WD and some of its clinical attributes, using polymerase chain reaction, restriction fragment length digestion, and bidirectional sequencing. The C allele and CC genotype of BDNF C270T were significantly overrepresented among controls compared to WD patients. In addition, a significantly higher proportion of the allele coding for Val and the corresponding homozygous genotype of BDNF Val66Met polymorphism was found among WD patients with age of onset later than 10 years. Furthermore, the A1A1 genotype of DRD2 Taq1A polymorphism was significantly more common among WD patients with rigidity. Our data suggest that both BDNF and DRD2 may act as potential modifiers of WD phenotype in the Indian context.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/fisiologia , Degeneração Hepatolenticular/genética , Polimorfismo de Nucleotídeo Único , Receptores de Dopamina D2/fisiologia , Adolescente , Adulto , Alelos , Fator Neurotrófico Derivado do Encéfalo/genética , Criança , Pré-Escolar , Feminino , Frequência do Gene , Genótipo , Humanos , Índia , Lactente , Masculino , Polimorfismo de Fragmento de Restrição , Receptores de Dopamina D2/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...